
The Crystal and Molecular Structure of Fluorodiphenyl-*N*-methylphosphine Imide, Ph₂FPNMe

By G. W. Adamson* and J. C. J. Bart

(Monsanto Research S.A., Eggbühlstrasse 36, 8050 Zürich, Switzerland)

Summary The Ph₂FPNMe molecule is monomeric in the crystal with a phosphorus-nitrogen bond length which indicates appreciable multiple bonding.

THE electronic structure of fluorodiphenyl-N-methylphosphine imide¹ can be represented as a resonance hybrid of structures (I) and (II). The P:N bond is isoelectronic

with the P:C(methylene) bond in the phosphorus ylides. The compound contains the structural unit (III) which is the repeating unit on which the cyclic phosphonitrilic compounds are based.² Whereas this compound is monomeric in solution, a related compound, (PhF₂PNMe)₂, is a dimer with a four-membered 1,3,2,4-diazadiphosphetidine ring.^{1,3} An accurate knowledge of the molecular structure of Ph₂FPNMe is thus of importance in adding to the understanding of the bonding and reactions of a number of classes of phosphorus compounds.

We have determined the crystal structure of Ph₂FPNMe. Suitable crystals were obtained from a sample which was kindly supplied by Dr. R. Schmutzler. They are monoclinic, space group $P2_1$, with a = 8.527, b = 6.682, c = 11.346 Å and $\beta = 106^{\circ}$ 40'. There are two molecules of formula $C_{13}H_{13}$ FNP in the unit cell. The intensities of the diffracted X-rays were measured on a Hilger and Watts linear diffractometer. The structure was determined by three-dimensional Patterson and Fourier techniques and refined by least-squares with individual anisotropic temperature factors for all atoms except hydrogen. The positions of the hydrogen atoms were determined from an electron density difference synthesis. The present value of R is 4.0% for 1450 independent reflections.

In contrast to (PhF₂PNMe)₂,³ Ph₂FPNMe is monomeric in the crystal. The bond angles at the phosphorus and nitrogen atoms are: $F-P-N = 118 \cdot 7^{\circ}$, $F-P-C(1) = 110 \cdot 9^{\circ}$, $F-P-C(7) = 110 \cdot 6^{\circ}$, $N-P-C(1) = 104 \cdot 2^{\circ}$, $N-P-C(7) = 104 \cdot 5^{\circ}$, $C(1)-P-C(7) = 107 \cdot 1^{\circ}$, $P-N-C(13) = 119 \cdot 1^{\circ}$, the e.s.d.s

being less than 0.2° . The bond lengths, except those of the C-H bonds are shown in the Figure.

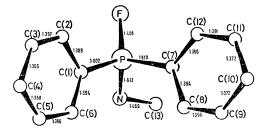


FIGURE. Perspective drawing of the Ph_3FPNMe molecule showing the bond lengths. The e.s.d.s are F-F, 0.002; P=N, 0.002; P-C, 0.003; N-C, 0.004; C-C(av.), 0.005 Å.

The bonding between ring atoms in cyclic phosphonitrilic compounds has been described as being due to P–N σ -bonds, π -bonding by electrons in orbitals perpendicular to the plane of the ring and π' -bonding involving the use of nitrogen lone-pair orbitals.² Similar possibilities seem to exist in Ph, FPNMe. The bond angles in Ph, FPNMe are consistent with approximate sp3 hybridization on the phosphorus and sp^2 hybridization on the nitrogen as is found in the phosphonitrilic compounds. However, the phosphorus-nitrogen bond length of 1.641(2) Å in Ph₂FPNMe is longer than any of the phosphorus-nitrogen bond lengths which have so far been observed in phosphonitrilic compounds.⁴ It is similar to the value of 1.64 Å which is obtained for a P:N double bond from covalent radii⁵ and to the value of 1.661 Å which has been observed for the P:C(methylene) bond length in Ph₂P:CH₂.⁶ In phosphonitrilic compounds the size of the P-N-P ring angle has been used to estimate the amount of π' -bonding.² If this criterion is applied to Ph_2FPNMe then the P-N-C(13) angle of 119.1° indicates that the amount of π' -bonding is not large.

The P-F distance of 1.488(2) Å is shorter than the average value of 1.52 Å which was found in $(PNF_2)_3$ and $(PNF_2)_4^8$ and the values of 1.57 and 1.62 Å which were found in (PhF₂PNMe)₂.³ The N-C(13) bond length is 1.469(4) Å compared with 1.475 Å which is given as a standard value for a $C(sp^3)-N(sp^2)$ bond.⁹

(Received, July 18th, 1969; Com. 1077.)

¹ R. Schmutzler, Chem. Comm., 1965, 19.

- ² D. P. Craig and N. L. Paddock, J. Chem. Soc., 1962, 4118. ³ J. W. Cox and E. R. Corey, Chem. Comm., 1967, 123.
- ⁴ Bond lengths in phosphonitrilic compounds have recently been tabulated by A. W. Schlueter and R. A. Jacobson, J. Chem. Soc. (A), 1968, 2317.
 ⁶ L. Pauling, "The Nature of the Chemical Bond," 3rd edn., Cornell University Press, Ithaca, New York, 1960.
 ⁶ J. C. J. Bart, J. Chem. Soc. (B), 1969, 350.
 ⁷ M. W. Dougill, J. Chem. Soc., 1963, 3211.
 ⁸ H. McD. McGeachin and F. R. Tromans, J. Chem. Soc., 1961, 4777.
 ⁹ This of Vetersteries Distances (Supplement). Chem. Soc. Special Publ., 1965, No. 18.

 - ⁹ Tables of Interatomic Distances (Supplement), Chem. Soc. Special Publ., 1965, No. 18.